Sono state scoperte le onde gravitazionali previste da Einstein. Le ha rilevate lo strumento Ligo (Laser Interferometer Gravitational-Wave Observatory), in Usa, e i dati sono stati analizzati dalle collaborazioni internazionali Ligo e Virgo. Quest’ultima fa capo allo European Gravitational Observatory (Ego) fondato e finanziato da Istituto Nazionale di Fisica Nucleare (Infn) e Consiglio nazionale delle ricerche francese (Cnrs).
L’annuncio è stato dato oggi a Cascina (Pisa), dove si trova lo strumento Virgo. La scoperta, pubblicata online sulla rivista Physical Review Letters, in un articolo liberamente accessibile, e in altri 12 articoli sul sito ArXiv, è stata annunciata oggi contemporaneamente negli Stati Uniti e in Italia, a Cascina. “E’ la prima rilevazione diretta delle onde gravitazionali” ed “apre un nuovo capitolo dell’astronomia”, ha detto all’ANSA il coordinatore della collaborazione scientifica Virgo, Fulvio Ricci, presentando i dati.
Previste un secolo fa da Albert Einstein, le onde gravitazionali sono le increspature dello spazio-tempo generate da eventi cosmici violenti, proprio come le onde prodotte quando si lancia un sasso in uno stagno.
Rivelate dalla collisione tra due buchi neri di 1 miliardo di anni fa
E’ stata la collisione tra due buchi neri avvenuta un miliardo di anni fa a provocare il primo segnale delle onde gravitazionali mai scoperto, rilevato dalle antenne dello strumento Ligo ed analizzato fra Europa e Stati Uniti dalle collaborazioni Ligo e Virgo, alla quale l’Italia partecipa con l’Istituto Nazionale di Fisica Nucleare (Infn). Per la fisica è un risultato senza precedenti. Il risultato è doppiamente sorprendente perché, oltre a confermare l’esistenza delle onde gravitazionali, fornisce anche la prima prova diretta dell’esistenza dei buchi neri. “Abbiamo osservato il primo evento in assoluto nel quale una collisione non produce dati osservabili, se non attraverso le onde gravitazionali”, ha detto all’ANSA il coordinatore della collaborazione Virgo, Fulvio Ricci. Tutto, ha aggiunto, “è durato una frazione di secondo, ma l’energia emessa è stata enorme, pari a 3 masse solari”.
I due buchi neri formavano una ‘coppia’, ossia un sistema binario nel quale l’uno ruotava intorno all’altro. “Avevano una massa rispettivamente di 36 e 29 volte superiore a quella del Sole. Si sono avvicinati ad una velocità impressionante, vicina a quella della luce. Più si avvicinavano, più il segnale diventava ampio e frequente, come un sibilo acuto; quindi è avvenuta la collisione, un gigantesco scontro dal quale si è formato un unico buco nero. La sua massa è la somma di quelle dei due buchi neri, ad eccezione della quantità liberata sotto forma di onde gravitazionali.
Il segnale intercettato in Europa
Il primo segnale che conferma l’esistenza delle onde gravitazionali è stato rilevato dallo strumento americano Ligo il 14 settembre 2015 alle 10, 50 minuti 45 secondi (ora italiana), all’interno di una finestra di appena 10 millisecondi “Avevamo in mano l’indicazione di aver registrato qualcosa di molto significativo”, ha detto il coordinatore della collaborazione scientifica Virgo, Fulvio Ricci. Il segnale rilevato da Ligo è stato intercettato in Europa, dall’italiano Marco Drago, mentre era in Germania, ad Hannover, di turno nel centro di calcolo nel quale arrivano i dati delle due collaborazioni. Ha immediatamente mandato una mail dicendo: “c’è grosso evento, per caso è successo qualcosa di strano nell’interferometro?” E’ stato subito chiaro che si trattava di qualcosa di nuovo. “E’ stato un evento piuttosto intenso e particolarmente interessante – ha rilevato Ricci – perché nella prima parte era una sorta di funzione oscillante, che aumentava progressivamente di frequenza e ampiezza, fino a raggiungere un picco per poi decrescere progressivamente fino a spegnersi”. Rilevare un segnale così debole in modo così preciso è stato possibile grazie all’aggiornamento tecnologico che aumentato la sensibilità degli strumenti di prima generazione dei rivelatori Ligo.
fonte ANSA
CHE COSA SONO LE ONDE GRAVITAZIONALI
Ipotizzate un secolo fa dalla teoria della relatività di Albert Einstein, le onde gravitazionali sono le ‘vibrazioni’ dello spazio-tempo provocate da fenomeni molto violenti, come collisioni di buchi neri, esplosioni di supernovae o il Big Bang che ha dato origine all’universo. Come le onde generate da un sasso che cade in uno stagno, le onde gravitazionali percorrono l’universo alla velocità della luce creando increspature dello spazio-tempo finora invisibili. Poiché interagiscono molto poco con la materia, le onde gravitazionali conservano la ‘memoria’ degli eventi che le hanno generate. La loro esistenza era supportata finora solo da prove indirette ma da adesso diventa possibile osservarle in modo diretto e con esse osservare una porzione dell’universo finora invisibile e misteriosa, come le zone popolate dai buchi neri o da fantascientifiche ‘scorciatoie’ per viaggiare nell’universo, i cosiddetti ‘cunicoli’ dello spazio-tempo (wormhole).
La scoperta delle onde gravitazionali è anche la conferma definitiva della teoria della relatività generale. Erano infatti l’unico fenomeno previsto da questa teoria a non essere stato ancora osservato. Secondo Einstein, quando una qualsiasi massa (che sia un sasso, una stella o un buco nero) viene accelerata, emette onde gravitazionali. Sono segnali molto deboli e complicati da osservare perchè fanno ‘oscillare’ tutto lo spazio-tempo, compresi gli strumenti che dovrebbero rilevarli. Riuscire a vederle è stata considerata a lungo una sfida impossibile. Nonostante ciò negli anni ’60 il fisico americano Joseph Weber mise a punto un strumento che teoricamente avrebbe potuto rivelare ‘l’impossibile’. Erano due grandi antenne cilindriche distanti fra loro 1.000 chilometri che, se attraversate da un’onda gravitazionale, avrebbero oscillato con un piccolo ritardo l’una rispetto all’altra. L’esperimento fallì ma dette inizio alla sfida. L’Italia la raccolse da subito con uno dei ragazzi di via Panisperna, Edoardo Amaldi, e con Guido Pizzella. Auriga e Nautilus sono stati i primi esperimenti, condotti nei Laboratori dell’Istituto Nazionale di Fisica Nucleare (Infn) di Legnaro (Padova) e Frascati (Roma), e con Explorer al Cern di Ginevra. Oggi gli strumenti più avanzati sono interferometri laser, come le due macchine gemelle americane Ligo (Laser Interferometer Gravitational-Wave Observatory) e l’europeo Virgo, ideato da Adalberto Giazotto e realizzato a Cascina (Pisa) dalla collaborazione tra Istituto Nazionale di Fisica Nucleare (Infn) e Centre National de la Recherche Scientifique (Cnrs), nell’ambito dello European Gravitational Observatory (Ego). Per il futuro si punta alla costruzione di un super telescopio ‘gravitazionale’ nello spazio, che potrebbe nascere dai test che sta conducendo la missione Lisa Pathfinder, dell’Agenzia Spaziale Europea (Esa).
ansa scienza